The generator matrix

 1  0  0  0  1  1  1  1  1  1  1  1 2X 4X  1  0  1  1  1 3X  1  1  1  1  1  1  1  1  1  1 3X  1  1 2X  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1 3X 3X  1 2X  1
 0  1  0  0 3X 4X 3X+1 4X+1  1 3X+2  4 3X+3  1  1 X+4  1  2 4X+3 X+2  1  2 2X+1 3X 2X+4  3 3X+2 2X+3 2X+2 4X+4 4X+1 4X  4 2X+3  1 2X 2X+1 4X+4 2X+4 2X+1 4X  3 X+3 3X X+2 X+2  2 4X+1 2X+3  3 2X 2X+4 X+3 X+2  1  1 2X+1  1  3
 0  0  1  0 3X+1 3X+2 3X+3  1 4X+2 X+1  2 2X+3 3X+2 2X+3 X+3  1 3X X+2 3X+3 2X+4 4X+2 3X 4X 2X+1  X 4X+2 X+1 2X+2 4X 2X  1 4X+1  3 3X+4  3 2X+1 2X 3X+3 2X  1 2X+1 3X+1  0 2X+4 2X+1  X 2X+3 X+3 X+2 3X 2X+3 4X+2 3X+1 X+4 3X+1 2X+3 2X+2 3X
 0  0  0  1 3X+3 3X+2 4X+3 3X+1  X 4X+2 X+1 2X X+4  2 4X+4 X+3 2X+4 X+4 X+2 2X 3X 2X+2 3X+1 3X 2X  4 X+1 3X+3 X+2  3 2X+4 3X+4 4X+1 X+3 3X+4  2  4 3X+3 3X+1 4X+1 2X+4  X 3X+2  2 4X+4  3  2  2  1 X+3 2X+2 2X  0 3X+1 2X+1 3X+1  3 3X+4

generates a code of length 58 over Z5[X]/(X^2) who�s minimum homogenous weight is 212.

Homogenous weight enumerator: w(x)=1x^0+660x^212+600x^213+920x^214+2148x^215+2340x^216+3680x^217+3380x^218+4780x^219+7412x^220+4960x^221+8860x^222+7960x^223+9660x^224+13724x^225+10600x^226+16000x^227+15760x^228+17100x^229+20900x^230+16560x^231+23340x^232+23160x^233+22140x^234+26104x^235+17520x^236+23820x^237+19060x^238+16360x^239+15984x^240+9040x^241+9840x^242+5080x^243+4040x^244+4288x^245+1480x^246+1300x^247+16x^250+20x^255+16x^260+8x^265+4x^275

The gray image is a linear code over GF(5) with n=290, k=8 and d=212.
This code was found by Heurico 1.16 in 202 seconds.